CHAPTER 8

SUBIRRIGATION

The purpose of this chapter is to examine factors affecting water
movement in a subirrigation system. Methods are presented making certain
preliminary design calculations to supplement results obtained from DRAINMCD
and improve the efficiency of its application. Examples to demonstrate the
use of these methods are presented and discussed.

There are basically two operational procedures for subirrigation
systems. The most common procedure is to maintain a constant water level
elevation in the tile outlet (Figure 8-]}). Water is periodically pumped
from a well, stream, or other water supply to replenish water which moves
from the drains into the soil to supply ET demands and seepage losses from
the system. During dry periods, this procedure results in a water table
profile which is more or less in steady state. The drain spacing necessary
to satisfy crop ET demands depends on the hydraulic conductivity of the
soil, peak ET, or consumptive use, height of the water level in the drain,
etc., Methods for determining the drain spacing for steady state operation
are discussed in the following section,

Another procedure for operating subirrigation systems is to place a
weir in the outlet that extends to near the soil surface and, by pumping for
an extended period, raise the water table into the root zone of the profile.
Then, pumping is topped and the water table is allowed to fall as water is
removed by ET and seepage. Pumping is initiated again when the water table
reaches a predetermined depth and the process is repeated. Water table
profiles for this unsteady state subirrigation process are process are shown
schematically in Figure 8-2. Determination of design parameters, such as
drain spacing in this situation depends on the time required to raise the
water table to the desired elevation. Methods for predicting the time
required to raise the water table in terms of drain spacing, hydraulic
conductivity, and other factors are given in a subsequent section of this
chapter.

Steady State Operation

The position and shape of the water table for steady~state subirrigation
can be approximated by making the Dupuit-Forchheimer (D-F) assumptions and
using the approach of Fox, et al, (1956). By neglecting water movement in
the unsaturated zone, the flow rate in the horizontal direction per unit
length of drain may be expressed as:

dh (8-1)

O =~ Kbz

Where, referring to Figure 8-1, ¢ 1is the horizontal flow rate (cm3/hr
cm) and h is the height of the water tible above the impermeable layer which
depends on the horizontal position, %, (i.e., h = h{x)). At any position,
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x, QO must be equal to the rate that water leaves the profile by ET in the
section x to x = L/2, That is,

Qx = e(L/2 - x} (8-2)
Then,
dh = e (L/2 - x) {(8-3)
- Kh ax

Separating variables and integrating subject to the boundary condition
of h = hO at x = 0 yields an expression for the water table position in
terms of x:

2 2 e L

e 2
h—EX -Tx+h0 (8-4)

Thus, the water table assumes an elliptical shape under steady ET
conditions, The derivation of Equation B-4 assumes that water can move
vertically from the water table by unsaturated flow to supply the ET demand.
The maximum upward rate of water movement is dependent on water table depth
as well as soil properties as discussed in Chapter 2. Therefore, the drains
should be placed close encugh together to maintain some minimum water table
elevation at the midpoint (x = L/2) during a period of maximum ET demand.
This spacing can be estimated from Eguation 8-4 by specifying a water table
elevation of hl at x - L/2 and solving for L:

L= {4 K2 - nD)/e1*? (8-5)

The effective horizontal hydraulic conductivity should be used for K in
Equation 8-5, while the maximum permissible water table elevation at the
drains, h_, will depend on the root zone depth, crop sensitivity and site
parameters.

As discussed above, Egquations 8-2 to 8-5 are subject to the D-F
assumptions and do not consider convergence losses near the drain. These
losses can be accounted for by substituting an effective depth to the
impermeable layer, @ , for d in Figure 8-1, as discussed in Chapter 2 (pages
2-13 to 2-15) for drginage. The h values are adjusted accordingly. The
value of 4 can be computed from Equations 2-13 and 2-14. Because d
depends on®the drain spacing, L, an iteration process is required toecompute
L from Equation 8-5. First, a trial value of L is calculated from Equation
B-5 using h values based on the actual value of d. Then, 4@ is computed
from Egquation 2-13 or Eguation 2-15 and the h and h are agjusted. Then, a
new value of L is determined from Equation 8-8. & néw value of 4 is
-computed and the process is repeated until L remains constant. Ugually, one
iteration is sufficient for convergence.

-



d h{x)

=X
IEE s li= u=slE sl =i lEiiEizEis liE s sl

Figure 8-1, Water table profile for subirrigation under steady state
conditions with an ET rate of e,
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Figure 8-2. Water table profiles for unsteady state operation of a
subirrigation system. The water table is raised to near the
surface at time, t_ . Then, pumping is stopped and the water
table recedes due fTo ET, as shown for times t. and t.. When
the water table reaches some depth, g, pumping is initiated to
raise the water table back to its initial position.
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Example 1 - Steady State Subirrigation

A Portsmouth sandy loam has a hydraulic conductivity of 3 cm/hr and a
profile depth to a restrictive layer of 2.0 m, Drains are placed at a 1 m
depth as shown in Figure 8-3 with the main in the direction of the surface
slope of 0.5 percent. Corn is to be grown with an effective rooting depth
of 30 cm (1 ft.). Roots cannot penetrate much below this depth because of
acid subscil. The drains to be used have a diameter of 10 cm (4 inches)
with a completely open effective radius of 0.51 cm. Determine the drain
spacing necessary for subirrigation during dry perlods in the summer when
the peak ET demand is 0,5 cm/day.

Because the root zone is 30 cm deep, the water level in the laterals
should not be held cleser than 30 cm to the surface. A given depth in the
lateral can be maintained in a sloping situation by placing a water level
control structure such as those shown in Figure 8-4 immediately below each
lateral. One design of such structures is described in detail in an SCS
technical note (TECH NOTE ENG-FL-11) from the SCS Florida State Office
(dated April 1977). Depending on the slope, it may be possible to service
several laterals with a single control structure (Figure 8-3). However, in
this case, we will assume that the water level is controlled exactly 30 cm
from the surface in each lateral so that h = 100 - 30 + d . Assuming d =
d = 100 cm for the first trial, gives h =°170 cm. To detSrmine h , we use
the curve in Figure 5-6 for Portsmouth. It gives a water table depth below
the root zone of 46 cm for a steady upward flux of 0.5 cm/day. The root
zone is 30 cm deep so h. = d + 100 -~ (30 + 46) = 100 + 24 = 124 cm.
Applying Eguation 8-5 gives a first estimate for the drain spacing of:

1/2

£
I

(4 x 3 em/hr {1702 cm2 - 124 cm )/(0 5 em/day . 1 day
24 hr)]

L
1

27.9 m (81 ft)

The equivalent depth to the impermeable layer is then calculated using
Equation 2-18 with r = I, = 0.51 cm as:

de = 100 ' = 74 cm
106 8 100
4 — = —_— - 3,
1+ 3550 T In —557 - 341

With this value of de' ho = 74 + 70 = 144 and h1 = 74 + 24 = 98. Then,

L2 = [4 x 3 (1442 - 982)/(0.5/24)] = 25.3 m (83 ft)

Recalculating d from Eguation 2~18 gives @ = 72 cm which is close
enough to the 74 cm assumed in the above calculafion of L. Therefore, a
drain spacing of L = = 25.3 m (83 ft) would be sufficient to supply an ET
rate of 0.5 cm/day, if the water level in the drain is held 30 cm from the
surface.

v
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Figure 8-4. Profile view of main drain line with water within a given
distance of the surface at the drain lines.
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What if the minimum tolerable water table depth is 50 cm, rather than
30, as assumed above? Then, starting with an assumed & of 70 cm, we would
have ho = 70 + (100 - 50) = 120 c¢m and h, = 70 + (100 _e30 - 46) = 94 cnm.
From Egquation 8-5, L1 = 17.9 m. Recalcuiating de gives de = 64 cm so h0 =
64 + 50 = 114 and h. "= 64 + 24 = 88, Then, L. = 17.4 m and the new d 3ig 4
= 63 cm, which is c}ose to the assumed value Of 64 cm. Therefore, i£%the
water level in the drain line is maintained at a depth of 50 cm, a drain
spacing of L = 17.4 (57 ft) would be needed, as opposed to the 25 m spacing
for a 30 cm depth.

Water Table Rise During Subirrigation

The time reguired to raise the water table to a height sufficient to
supply crop ET demands may be the limiting factor in the design of a
subirrigation system. The need to consider this aspect is obvious for
operations where the water table is raised to the root zone and then allowed
to fall as water is removed from the profile by ET. These systems function
in an unsteady state mode and it is extremely important to be able to raise
the water table rapidly encugh to maintain a supply of water to the crop.
The time required to raise the water table is also important for steady
state operation. Ignoring this aspect of the operation could result in a
prohibitive length of time to raise the water table at the beginning of the
growing season or when irrigation is initiated.

Methods for predicting water table .rise for both initially horizontal
and draining profiles were presented in a previous paper (Skaggs, 1973).
The methods are described here and new graphical sclutions are presented for
the convenience of the user.

Equation 8~1 for horizontal flow rate may be combined with the
principle of conservation of mass to obtain the following governing eguation
for unsteady conditions (van Schilfgaarde, 1974).

h _ 3 3h )
f-é*E—Ks';[h-é';]“"e (8=-6)

Where, referring to Fiqures 8-1 and 8-2, h = hix,t) is the distance of
the water table above the impermeable layer, t is time, f is effective or
fillable porosity, and e is the rate water is added to the soil by rainfall
and is negative for losses by ET or deep seepage. If the water table is
initially flat at some distance, h, above the impermeable layer, the
boundary and initial conditions ma§ be written as:

h=h , x=0 , t>0 (8-7a)
h=h , x=L , t>0 (8-7b)
h=h , 0<x<L, t=0 (8-7¢)

Equation 8-6 can be expressed in nondimensional form as:

k! = 2 {H BE) + u {8-8)

T 3L 13
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Where H = h/h , € = x/L, ¢ = eLz/Khz, and T = K ho t. Then, the
boundary conditiong may be written, £ L2
H=1, (=0, 1> 0 {8-9a}
H=1, £=1, 1> 0 (8-9b)
BE=D=h/h, O<E<, T = 0O {8-9¢)
i"Te" e

The D-F assumptions are not valid for regions near the drain tube, as
discussed earlier, so d_ should be substituted for 4 in Figures 8-1 and 8-2.
The values of h and h.eshould be adjusted accordingly to compensate for
convergence losges nea% the drain.

Solutions

Numerical sclutions to Equation 8-8 were cbtained by writing the
equation in finite difference form and solving on the digital computer. The
numerical methods are described elsewhere (Skaggs, 1975). Scolutions for the
H vs, T are given for a point midway between the drain (£ = x/L = (0.5) in
Figures 8-5 through 8-8 for p values of 0, -1, -2, and -3, respectively,

The solutions in each figure are plotted for a range of D = h_/h vwvalues
from D = 0.0 to D - 0.95. Seclutions for D and u values not glve% can be
cbtained by interpolation.

The final or steady state values of H are constant for a given p value,
as shown in Figures 8-5 through 8-8. The steady state value ©f H can be
obtained by solving Egquation 8-8 with 8H/3t = 0. Then,

2 oH
3F (H 33) + u =0 - (8=-10)

Separating variables and integrating subject to the boundary
conditions;

3H/3E = 0 at £ = 1/2 {(8-11a)
and
H=1at & =20 . (8-11b)
gives
H2 = —uEz + uE + 1 {8-12)
At the midpoint, £ = 1/2 and Hi = p/d4 + 1 {8-13)
Then, for example, if u = -1, the midplane H value should approach Hm =

0.87 after some period of time. This is consistent with results given in
Figure 8-6, which shows that the steady state position of H = 0.87 is
attained at T = 0.8 for all D values. Note that for u = -4, Hm = 0
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Figure 8-5. Solutions for water table movement at a polnt midway between the drains when the water table
elevation is raised to h, in the drains. The initial water table is horizontal at an elevation
of hj and D = hy/h,. The nondimensional vertical loss rate is y = 0,

C C C



10 I T T TTT] | |‘|||||| T 1771
—— D=095 X
) p =-10
.02
) \Y)
; fx
01
i ..l".? q,
" O,
I 04 Q" 00
cg
0.2
00 I
0.0l 0.1 ‘ .O 10.0
- Kh,
fL?

Figure 8-6, Solutions for water table movement at a point midway between the drains when the water table
elevation is raised to hy in the drains. The initial water table is horizontal at an elevation

of hi and D = hi/ho' The nondimensional vertical loss rate is y = -1.0.
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{Equation 8-13). This simply means that the water table elevation at the
midpoiBt w%ll be drawn down to the impermeable layer by the ET losses when

¥ = el /Kh” = -4, This assumes, of course, that the ET rate of e occurs
uniformiy Scross the field and is not restricted by the deep water table.

In fact, it may be restricted, but this would represent a point of failure
for the subirrigation system. In any case, solutions for p < -4 are not
needed as it is not pessible to maintain a steady state midplane water table
above the impermeable layer for these values.

It may seem unusual that the midplane water table decreases after the
water level is raised in the drains (e.g., the solution for D = 0.8, y = =3
in Figure 8-8). This can occur when the initial water table is higher than
the steady state water table depth; i.e., D > H , 1In other cases, the
midplane water table may decrease for a while tlen increase (e.g.,, the
solutions for D = 0.4 and 0.2 in Figure 8-8). This happens because some
time is required for the water table midway between the drains to react to a
change in the water level at the drains. However, vertical losses due to ET
(and deep seepage, if it occurs}, have an immediate effect. So the midplane
water table may fall at first due to ET losses, then increase as water
arrives from the drain.

Example 2 - Water Table Rise During Startup

The water table in Example 1 is initially horizontal at a depth of I m
when the crop is planted and the water level in the drain is raised to
within 30 cm of the surface., If the drain spacing is 25 m (from Example 1)
and the evaporation rate is assumed to be zero during the period just after
planting, how much time will be required to raise the midpoint water table
to the design elevation of 76 cm from the surface?

Since e = 0, ¥ = 0, and Figure 8-5 can be used to calculate the time
required. From calculations in Example 1, d = 72 ¢m for L = 25 m, sc h_ =
72 + (100 - 30) = 142 cm, h, = 72/142 = 0.51° The water table at the
midpoint is to be raised to*h, = 72 + (100 - 76) = 96 cm. Then, H=h_/h =
96/142 = 0.676, The effectivé porosity for Portsmouth s.l. can be estimafed
from the slope of the drainage volume ~ water table depth curve given in
Figure 5~4. The slope between water table depths of 1.0 m and 0.75 m is f =
0.06. Substituting H = 0.68 in Figure 5-5 and interpolating for D = 0.51
gives 1T = (0.089. Then,

Kh
o}
T = £ 12 t = 0.082
2 2 2
& = 0.089 f L - 0.089 x 0,06 x 2500" cm = 78 hours
K ho 3 om/hr x 142 —_—

Thus, 78 hours will be required to raise the water table to the design
elevation, if evaporation from the surface is negligible.

-/
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What time will be required for the same situation,if tae ET rate is a
relaEiveﬁy modest 0.20 cg/dag? For this case, p = -eLo/K'-ho = <-0.20 cm/d x
25007 em /(3 cm/hr x 142" cm” x 24 hr/day) p = -0.86. Subgtituting H =
0.68 in Figure 5-6 (u = -1) gives 7__ = 0.137 and from above TO = 0,089,
Interpolation for u = -0.86 yield 1 = 0.130. Solving for t, as shown

. -0.86
above, yields:

0.130 x 0.06 x 2500°
3 x 142

t = = 114 hours

This example shows that a substantial length of time may be required to
raise the water table, especially when water is lost by ET from the surface,
The time increases sharply with e, as shown in Flgure 8-10, for L = 25 m.
The 25 m spacing was determined from steady state considerations in Example
1 such that a water table depth of 76 cm at a point midway between the
drains would result if the water level in the drains is held at an elevation
30 cm from the surface and the steady ET = 0.5 cm/day. However, the above
results and those given in Figure 8-10, show that a long time would be
required to raise the water table to the desired steady state position. For
example, if the water table is allowed to drop to a depth of 10C cm for some
reason (equipment failure, operator error, assumption that it is going to be
a wet yvear and irrigation will not be needed), about 240 hours would be
required to raise the water table to its steady state position, if e = 0.4
cm/day. The irrigation requirement would not be met during that period and
substantial yield reductions could result. Therefore, a smaller drain
spacing than calculated from the steady state analysis may be desirable to
reduce the time required to raise the water table during the growing season.

The time required to raise the midplane water table, as affected by the
vertical loss rate, e, is also plotted for L = 17.4 m in Figure 8-10. Only
57 hours would be required to raise the water table for this spacing when e
= 0.4 cm/day. Then, the water level at the drains could be allowed to fall
to a depth of 50 cm and still supply a steady ET rate of e = 0.5 cm/day
{Fxample 1). This would allow a smaller variation in the steady state water
table depth (from 50 cm at the drain, to a depth of 76 cm at the midplane}.
At the same time, the smaller spacing would provide system that is
responsive to adjustments in the ocutlet water level during the growing
season.

The effects of rainfall and of available water stored in the
unsaturated zone are not considered in this chapter. The effects of such
factors on drain spacing and operational procedures of a subirrigation
system can be analyzed best by using DRAINMCD to simulate the performance of
the system. However, the methods discussed herein can be used to make a
first cut design of the subirrigation system. The methods may also be used
to check the final design for the time required to raise the water table to
an operational position. Interruptions of subirrigation due to eguipment
breakdowns or other problems, are not planned so they are not usually
simulated when DRAINMOD is used to analyze a given design., Thus, the time
required to "restart" the subirrigation process should be checked for all
systems designs. o
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Figure 8-92. Effect of vertical loss rate e on time to raise the midplane
water table from a depth of 100 cm to 76 cm for two drain
spacings in a Portsmouth s.l. soil. The water level in the
drains is raised to within 30 cm of the surface for beoth drain
spacings.



